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ABSTRACT

Starting in 2014, the new generation of Japanese geostationary meteorological satellites carries an Ad-

vanced Himawari Imager (AHI) to provide the observations of visible, near infrared, and infrared with much

improved spatial and temporal resolutions. For applications of the AHI measurements in numerical weather

prediction (NWP) data assimilation systems, the biases of the AHI brightness temperatures at channels 7–16

from the model simulations are first characterized and evaluated using both the Community Radiative

Transfer Model (CRTM) and the Radiative Transfer for the TIROS Operational Vertical Sounder

(RTTOV). It is found that AHI biases under a clear-sky atmosphere are independent of satellite zenith angle

except for channel 7. The biases of three water vapor channels increase with scene brightness temperatures

and are nearly constant except at high brightness temperatures for the remaining infrared channels. The AHI

biases at all the infrared channels are less than 0.6 and 1.2 K over ocean and land, respectively. The differences

in biases between RTTOV and CRTM with the land surface emissivity model used in RTTOV are small

except for the upper-tropospheric water vapor channels 8 and 9 and the low-tropospheric carbon dioxide

channel 16. Since the inputs used for simulations are the same for CRTM and RTTOV, the differential biases

at the water vapor channels may be associated with subtle differences in forward models.

1. Introduction

The Advanced Himawari Imager (AHI) on board the

Japanese satelliteHimawari-8 (Bessho et al. 2016) is the

first of the new generation of geostationary imagers

among global meteorological observation systems.

Similar instruments, the Advanced Geostationary Ra-

diation Imager (AGRI), the Advanced Baseline Imager

(ABI), and the Flexible Combined Imager (FCI) will be

on board the Chinese satellite Fengyun–4A (Lu 2013),

the U.S. Geostationary Operational Environmental

Satellite (GOES)-R (Schmit et al. 2005, 2016), and the

European Meteosat Third Generation (MTG)–Imaging

1 (MTG-I1; Ouaknine et al. 2013), respectively. The

AHI/Himawari-8 was launched by the Japanese Mete-

orological Agency on 7 October 2014. It is now posi-

tioned in geostationary orbit nominally at 140.78E and is

perched at 35 800 km above the equator. Compared to

all earlier geostationary imagers, the AHI observes the

earth’s atmosphere withmuch higher spectral, temporal,

and spatial resolutions.

The geostationary imager observations are critical for

national weather services and nowcasting applications.

The visible and infraredmeasurements from geostationary
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imagers are used to retrieve cloud information, such as

particle size and cloud-top properties (Mecikalski et al.

2008). The infrared and water vapor imageries are utilized

to derive the atmospheric motion vectors by tracking the

movements of clouds and water vapor fields (e.g., Velden

1996; Velden et al. 1997, 1998). The retrieved products are

used for analyzing and defining the weather systems from

their preconvective environments to occurrence and evo-

lution (Mecikalski and Bedka 2006; Mecikalski et al. 2015;

Gravelle et al. 2016). Recently, it was also demonstrated

that geostationary imager radiance assimilation improves

the forecast skill of fast-evolving weather systems (Stengel

et al. 2009; Zou et al. 2011, 2015). The applications in at-

mospheric parameter retrievals and numerical weather

prediction (NWP) demand an accurate calibration/

validation (cal/val) of the geostationary imager data.

The AHI on board Himawari-8 has 3 visible, 3 near-

infrared, and 10 infrared channels. Yu and Wu (2016)

evaluated the calibration accuracy of AHI visible and

near-infrared channels 1–6 by comparing them with the

TABLE 1. AHI channel characteristics of central wavelength, bandwidth, WF peak, spatial resolution at the satellite subpoint (SSP), SNR

at 100% albedo for visible and near-infrared channels, and noise-equivalent differential temperature (NEdT) for infrared channels.

Channel No. Central l (mm) Bandwidth (mm) WF peak (hPa) Spatial resolution at SSP (km) SNR or NEdT

Visible 1 0.46 0.041 — 1 $300 (100% albedo)

2 0.51 0.031 1

3 0.65 0.081 0.5

Near infrared 4 0.86 0.035 1

5 1.61 0.041 2

6 2.26 0.044

Infrared 7 3.85 0.201 Surface #0.16 (300K)

8 6.25 0.822 377 #0.40 (240K)

9 6.95 0.402 457 #0.10 (300K)

10 7.35 0.187 587 #0.32 (240K)

11 8.60 0.373 Surface #0.10 (300K)

12 9.63 0.378 40

13 10.45 0.419 Surface

14 11.20 0.668

15 12.35 0.966

16 13.30 0.564 996 #0.30 (300K)

TABLE 2. Input variables and parameters for clear-sky simulations with CRTMv2.2.3.

Category Variable name Unit Data resource

Atmosphere variables Level and layer pressure hPa ECMWF analysis

Temperature K

Water vapor mixing ratio ppmv

O3 mixing ratio

CO2 mixing ratio Constant (376)

Surface variables Land type — One-Minute Land Ecosystem Classification Producta

Skin temperature K ECMWF analysis

Water type — Always 1 (seawater)

Wind speed m s21 ECMWF analysis

Wind direction Degrees

Geometry Terrestrial elevation m Global 30 arc s elevation datasetb

Satellite zenith angle Degrees Calculated according to longitude and latitude

Satellite azimuth angle

Solar zenith angle

Solar azimuth angle

Parameters Climatology — U.S. standard profile

Land coverage — 1 for land and 0 for ocean

Water coverage 0 for land and 1 for ocean

Snow coverage Always 0

Ice coverage Always 0

Land surface classification scheme — IGBP

a http://modis-atmos.gsfc.nasa.gov/ECOSYSTEM/index.html; the ‘‘land type’’ is not needed by RTTOV.
b http://webmap.ornl.gov/ogcdown/dataset.jsp?ds_id510003.

2554 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 33

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 04/04/22 06:47 PM UTC

http://modis-atmos.gsfc.nasa.gov/ECOSYSTEM/index.html
http://webmap.ornl.gov/ogcdown/dataset.jsp?ds_id=10003


Visible Infrared Imaging Radiometer Suite (VIIRS) on

board the Suomi–National Polar-Orbiting Partnership

satellite. It was demonstrated that AHI reflectance

quality agrees well with that of VIIRS data within 5%

for channels 1–4 and 6, while AHI channel 5 is generally

brighter than VIIRS by ;6%–8%. However, there are

still no publications that present the convincing results

of the val/cal of AHI infrared channels.

Applications of geostationary imager radiance data in

NWP systems are limited to infrared channels (Köpken
et al. 2004; Szyndel et al. 2005; Stengel et al. 2009; Zou

et al. 2011; Qin et al. 2013; Zou et al. 2015). Before AHI

infrared radiances can be assimilated into global and

regional NWP systems, it is important to properly

quantify the biases of the 10 AHI infrared channels. In

this study, the AHI data biases are estimated by the

differences between observations and simulations ob-

tained by using two widely used radiative transfer

models. The paper is organized as follows: Section 2

provides AHI data characteristics. The two fast radia-

tive transfer models and input data for AHI simulations

are briefly described in section 3. Biases and standard

deviations estimated for AHI infrared channels 7–16 are

presented and compared in section 4. The scene and

satellite zenith angle dependences ofAHI biases and the

impacts of land surface emissivity on biases of AHI

surface-sensitive channels are discussed. Summary and

conclusions are provided in section 5.

2. AHI data characteristics

TheAHI instrument onboardHimawari-8 is designed for

8 years of service for observing potentially life-threatening

weather, including tropical storm activity in the Pacific

Ocean at a full Earth imaging refresh rate of 10min (Clark

2014). Table 1 presents the center wavelengths, bandwidths,

spatial resolutions, and measurement precisions for AHI

visible, near-infrared, and infrared channels. A consistent

spatial resolution of 2km for all AHI infrared channels is

apparently beneficial for assimilating AHI multichannel

radiance data and for deriving AHI multichannels products

based on spectral differences, such as cloudmask algorithms

(Heidinger 2011). Out of the 16 AHI channels, AHI chan-

nels 8–10 are strongly affected by water vapor in themiddle

and upper troposphere. AHI channel 12 is affected by

stratospheric ozone, and channel 16 is affected by carbon

dioxide in the low troposphere.

3. Radiative transfer models

The Community Radiative Transfer Model (CRTM)

and the Radiative Transfer for the TIROS Operational

Vertical Sounder (RTTOV) are two widely used fast

radiative transfer models. CRTM was developed by the

U.S. Joint Center for Satellite Data Assimilation

(JCSDA) (Weng 2007; Han et al. 2007). RTTOV was

originally developed by Saunders et al. (1999) and is

maintained by the European Centre for Medium-Range

Weather Forecasts (ECMWF) (Matricardi et al. 2004).

Both models support a large number of sensors on board

historical and current geostationary/polar-orbiting satel-

lites, including AHI on board Himawari-8. Specifically,

model simulations of clear-sky radiances are generated

by CRTM or RTTOV with any given vertical profiles of

atmospheric temperature, water vapor and composition,

surface temperature, and surface wind speed, as well as

solar and sensor geometry parameters. For cloudy radi-

ance simulation, which is not considered for this study,

vertical profiles of hydrometeor variables (e.g., cloud

liquid water path and ice water path) are also required.

A detailed description of input variables and param-

eters for clear-sky radiance simulations with CRTM,

version 2.2.3 (CRTMv2.2.3), is provided in Table 2. The

three-dimensional variables of temperature, water vapor,

pressure, and ozone mixing ratio, as well as the two-

dimensional variables of surface skin temperature,

FIG. 1. (a) Weighting functions of AHI infrared channels calcu-

lated by using CRTM with a clear-sky atmosphere profile as the in-

put. TheECMWFmodel levels are indicated by gray horizontal lines.

(b) Spectral response functions of the AHI on board Himawari-8,

accompanied with typical brightness temperatures simulated with

CRTM and an IASI coefficient file (gray thin curve).
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surface wind speed, and surface wind direction, are ob-

tained from ECMWF analyses, which are available at a

6-h interval. The ECMWF data have a horizontal reso-

lution of 0.258 3 0.258, 91 vertical levels, and a model top

around 0.01hPa. The mixing ratio profile of carbon di-

oxide is set to a constant value of 376ppmv. The land

type and terrestrial elevation required by CRTMv2.2.3

are extracted from the One-Minute Land Ecosystem

Classification Product and the global 30arc s elevation

dataset, respectively. The input variables and parameters

required by RTTOV, version 11.2 (RTTOVv11.2), for

clear-sky radiance simulations are similar to CRTM ex-

cept for the land type, which is not needed for RTTOV.

In addition, as a shortwave infrared channel, AHI chan-

nel 7 could be impacted by the solar radiance contribu-

tion, especially in the presence of sea surface reflection.

FIG. 2. (a) Albedo of AHI visible channel 3; (b) brightness temperatures of AHI channel 14; (c) AHI-derived

cloud types, including clear (clr, cyan), fog (yellow), water (light green), supercooled water (scwt, green), opaque

ice (op_ice, forest green), cirrus (orange), overlapping (overlap, blue), and overshooting (oversht, red); and

(d) AHI-derived clear (clr), probably clear (prob_clr), probably cloudy (prob_cldy), and cloudy (cldy) pixels at

0300 UTC 22 Sep 2015.
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Such a solar reflection effect is taken into account in both

the CRTM and RTTOV simulations.

Because the temporal and spatial resolutions of AHI

observations and ECMWF analyses are different, only

the data at the ECMWF analyses time and grid points

were used. The cloud mask required by this study for

determining clear-sky AHI data is obtained from the

Clouds from Advanced Very High Resolution Radi-

ometer (AVHRR) Extended (CLAVR-x) (Heidinger

et al. 2012).1 The ability for CLAVR-x to identify clear

pixels from cloudy pixels with small uncertainties allows

us to select only those AHI data that are identified cer-

tainly as clear for AHI bias estimation. Data flagged

probably clear, cloudy, or probably cloudy are excluded

for the bias estimate of AHI data conducted in this study.

4. Numerical results

a. Vertical and spectral distributions of AHI infrared
channels and clear-sky data distribution

Figure 1a shows the weighting functions (WFs) of the

10AHI infrared channels calculated using CRTMwith a

clear-sky atmosphere profile as the input. The spectral

response functions (SRFs)of theAHIonboardHimawari-8

are provided in Fig. 1b, in which a typical variation of

brightness temperatures simulated with CRTM in the in-

frared part of the electromagnetic spectrum at all wave-

numbers observed by the Infrared Atmospheric Sounding

Interferometer (IASI) is included as reference. Most

AHI infrared channels are surface channels with WF

peaks located at the surface or near surface except for

three water vapor channels. The water vapor channel 8

located in the upper troposphere is similar to imager

channel 3 from GOES-11, -12, -13, and -15. The AHI

channels 9 and 10, with their peakWFs located at 457 and

587hPa, respectively, shall provide much needed water

vapor information in the middle and low troposphere for

capturing short-term environmental changes with respect

to timing and location of the occurrence and evolution of

new convective storms and severe weather signatures.

TheWF of AHI channel 12 has two peaks, one located at

the surface and the other at 40hPa, where ozone con-

centration is abundant. The AHI channel 16 is a carbon

dioxide channel and is located along the spectral radi-

ances (Fig. 1b)with a strong slope. Since carbon dioxide is

wellmixed in the atmosphere, this channel is in fact a low-

tropospheric temperature-sounding channel.

FIG. 3. (a) Composite map of areas that had clear pixels at least

once (cyan) or no clear pixels (green), and (b) total data counts of

clear-sky pixels within 28 3 28 grid boxes during 12 days: 22–24 Sep

and 15–17 Dec 2015, as well as 20–22 Mar and 5–7 Jun 2016.

FIG. 4. Spectral response functions (curves) and the center fre-

quencies of AHI channel 16 with (blue) and without (red) using the

updated SRFs, as well as typical IASI brightness temperatures

simulated with CRTM (gray).

1 ftp://ftp.ssec.wisc.edu/clavr/.
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TheAHIbrightness temperaturemeasurements in clear-

sky conditions required by the bias estimation are selected

based on the CLAVR-x AHI cloud masks. A cloud mask

examplewithin and aroundTyphoonDujuan at 0300UTC

22 September 2015 is provided in Fig. 2. It is seen

that clouds with high albedo (Fig. 2a) are spatially well

correlatedwith the lowbrightness temperatures of channel

14 (Fig. 2b). The brightness temperature at channel 14

(Fig. 2b) is the lowest in regionswith overshooting (Fig. 2c)

and the second lowest when there are opaque ice or

overlapping clouds (Fig. 2c). Fog, water clouds, and cirrus

are more difficult to see in a single channel, such as AHI

FIG. 5. Spatial distributions of O2BCRTM biases of AHI channels 7–16 over ocean within 28 3 28 grid boxes.
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visible channel 3 (Fig. 2a) or infrared channel 14 (Fig. 2b),

than opaque ice or overlapping clouds. The probably

cloudy pixels are located at the edges of cloudy regions

(Fig. 2d). Almost no probably clear pixels are found in this

case. The clear pixels in the cyan regions in Fig. 2d are

finally selected for deriving AHI data biases and standard

deviations separately over ocean and land.

Weather systems populated with clouds are often lo-

cated in the same region in a short period, within a day

or two. To minimize the data-void regions with clear

AHI pixels over the full disk ofAHI, theAHI data in the

following 12 days in four different seasons are put to-

gether for the bias estimation of this study: 22–24 Sep-

tember and 15–17 December 2015, as well as 20–22

March and 5–7 June 2016. Figure 3a presents a composite

map of areas that had clear pixels at least once (cyan) or

no clear pixels (green) during the selected 12-day periods.

The total data counts of clear-sky pixels within 28 3 28
grid boxes during the selected 12 days are provided in

Fig. 3b. Most regions are observed with more than 100

clear AHI pixels in each 28 3 28 grid box except for some

regions in the tropics populated with clouds in the se-

lected data period.

The initial AHI simulations using CRTM were found

problematic when compared with those of RTTOV. For

examples, the bias of AHI channel 16 estimated by the

mean differences between AHI observations and CRTM

simulations (i.e.,O2BCRTM) is as large as21.20K, while

that estimated by the mean differences between AHI

observations andRTTOVsimulations (i.e.,O2BRTTOV)

is only 20.35K. Through a careful check of all input

variables and parameters for the CRTM simulations, it

was found that the AHI SRFs were updated in Septem-

ber 2013 at the JMA website,2 but these updated SRFs

were not implemented in CRTM. The differences be-

tween the updated and previous SRFs had caused bias

differences in several channels of different magnitudes.

Figure 4 shows the SRFs and the center frequencies of

FIG. 5. (Continued)

2 http://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/

spsg_ahi.html.
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AHI channel 16 with and without using the updated

SRFs. The center frequency of channel 16 shifted

from a larger value (753.37 cm21) to a smaller value

(754.13 cm21). Because the spectral radiances in

channel 16 have strong slope, the SRF shift can cause a

large difference between CRTM and RTTOV. In fact,

the bias of AHI channel 16 calculated by O2BCRTM

with the updated AHI SRFs reduces to20.52K, which

is comparable to that of RTTOV. In other words, a

0.24 cm21 center frequency and SRF shift doubled the

bias magnitude of channel 16.

b. AHI data biases and standard deviations
over ocean

Bias characteristics of AHI infrared channels 7–16

over ocean are examined in terms of their spatial

distributions, satellite zenith angle dependence, and

scene temperature dependence.

The spatial distributions of biases of AHI channels 7–

16 over ocean (Fig. 5) are calculated within 28 3 28 grid
boxes and by using CRTM simulations with the updated

SRFs. The AHI channel 7 (center wavenumber around

2575.94cm21) has large positive biases in the middle lati-

tudes in the Southern Hemisphere and the tropical central

Pacific area. Small negative biases are found elsewhere. The

AHI channel 9 has positive biases almost everywhere, im-

plying that themodelwater vapor in themiddle troposphere

is probably systematically too wet. The stratospheric ozone

channel 12 has small biases everywhere except for the

tropical central Pacific area. Large positive biases in the

tropical central Pacific,where the tropopause is usually high,

could be associatedwith an inconsistent tropopause altitude

between the model and reality. All other channels—that is,

FIG. 6. Variations of (a),(b) biases and (c),(d) standard de-

viations of O2BCRTM (solid) and O2BRTTOV (dashed) differ-

ences with respect to satellite zenith angle at 28 intervals for AHI

data for channels 7–16 over ocean. Data counts at 28 intervals are
indicated in gray shading in (d). Color convention for different

channels is the same as in Fig. 1.

FIG. 7. Variations of (a),(b) biases and (c),(d) data counts of

O-BCRTM (solid) andO-BRTTOV (dashed) differenceswith respect to

the scene brightness temperature at 1-K intervals for AHI data for

channels 7–16 over ocean. Color convention for different channels is

the same as in Fig. 1.
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channels 8, 10, 11, 13–16—are characterized by negative

biases in the full disk of AHI.

Variations of biases and standard deviations of

O2BCRTM and O2BRTTOV differences with respect

to the satellite zenith angle are shown in Fig. 6. Data

counts at 28 interval are also provided in Fig. 6. The

AHI biases and standard deviations do not have a

significant dependence on the satellite zenith angle

when satellite zenith angles are greater than 108 ex-
cept for channel 7. The bias and standard deviation of

O2B differences of AHI channel 7 distinctly in-

crease when the satellite zenith angle is greater than

458. It could be a result of solar reflectance by sea ice

during daytime. Since the solar reflectance by sea ice

is not simulated in either CRTM or RTTOV, a larger

O2B difference could be caused by AHI channel 7.

When satellite zenith angles are less than about 108,
most of channel biases decrease with satellite zenith

angle except for channel 7. The satellite zenith angle

dependence is possibly caused by the forward models.

As pointed out by Chen et al. (2013), an excessive

correction of sun-glint effect could bring a negative

bias, which explains the bias dependence of channel 7

at low satellite zenith angle. Large differences be-

tween CRTM and RTTOV simulations are found for

biases of channels 8–10 and 16 only (Fig. 6a). Since

these are the channels with WFs located in the tro-

posphere, it is possible that these differences come

from the coefficients included in the two forward

models. The coefficients in RTTOV were trained

on the kCompressed Radiative Transfer Algorithm

(kCARTA), while those in CRTM were trained

on the Line-By-Line Radiative Transfer Model

(LBLRTM; Saunders et al. 2007). The differences of

the coefficients affect the simulated transmittances

and thus brightness temperatures. Saunders et al.

(2007) conducted an intercomparison of 14 line-by-

line and fast radiative transfer models. They pointed

out that the transmittances computed by 14 models

differ, particularly in the carbon dioxide channels

(e.g., 14.966mm). Also, RTTOV transmittances de-

part from the references more than the other models

for the water vapor channels (e.g., 6.344mm).

Variations of biases and data counts with respect to

the scene brightness temperature at 1-K interval over

ocean are examined in Fig. 7. All infrared channels

seem to have scene-dependent biases, especially at

high brightness temperatures. The strongest scene

FIG. 8. (top) Biases and (bottom) standard deviations calculated

by O2BCRTM (blue) and O2BRTTOV (red) statistics for all data

over ocean with satellite zenith angles less than 608.

TABLE 3. Bias (m) and standard deviation (s) betweenAHI observations andmodel simulations of brightness temperatures using either

CRTMv2.2.3 or RTTOVv11.2 with the ECMWFanalyses under clear-sky conditions for data with satellite zenith angles less than 608. The
surface emissivity model in RTTOVv11.2 is used in the CRTM simulations.

Channel No.

Ocean Land

m (K) s (K) m (K) s (K)

CRTM RTTOV CRTM RTTOV CRTM RTTOV CRTM RTTOV

7 0.28 0.26 0.97 1.04 1.16 1.17 3.59 3.60

8 20.17 0.37 1.09 1.09 20.24 0.25 1.08 1.09

9 0.44 0.17 1.02 1.02 0.36 0.04 1.06 1.08

10 20.34 20.22 0.79 0.79 20.37 20.28 0.90 0.90

11 20.45 20.53 0.61 0.62 0.39 0.36 2.63 2.62

12 20.01 20.03 0.52 0.53 0.60 0.61 1.75 1.75

13 20.30 20.33 0.66 0.67 1.15 1.17 2.98 2.98

14 20.26 20.30 0.74 0.75 1.19 1.19 2.97 2.97

15 20.56 20.58 0.77 0.78 0.75 0.73 2.62 2.61

16 20.52 20.35 0.60 0.62 0.04 0.27 1.47 1.51
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dependence of bias is found in channel 8. As indicated

by Saunders et al. (2013), such strong scene-

dependent biases are mainly caused by the in-

strument nonlinearity. Nearly all the infrared imagers,

including AHI, are self-calibrated by using a black-

body inside the instrument as the heat target and the

space as the cold target. The imagers are assumed to

have a linear response with the incident radiation,

ignoring mall nonlinearities that are present in reality.

Note that the scene dependences of O2BRTTOV

biases are not as significant as those of O2BCRTM

biases for AHI water vapor channels 9 and 10. The

difference of the coefficients between the two forward

models could be another possible cause of the scene-

dependent biases. Differences of the variations of

standard deviations between CRTM and RTTOV

with respect to the scene brightness temperature ob-

servations are negligible (figures are omitted).

The spatially averaged biases and standard deviations

calculated by CRTM and RTTOV for all data over

ocean with satellite zenith angles less than 608 are pro-

vided in Table 3 and Fig. 8. The differences of biases of

window channels 13–15 between CRTM and RTTOV

are rather small, which indicates that the infrared sea

surface emissivity model employed by CRTM (Wu and

Smith 1997; Nalli et al. 2008) andRTTOV (Sherlock and

FIG. 9. Surface emissivity used in (a) CRTMat all times and (b) RTTOV in September. (c) Differences of surface

emissivity for AHI channel 11 between CRTM and RTTOV over Australia. (d) Spatial distribution of the 17

surface types over Australia in the IGBP land-type scheme that are inputted into CRTM: water (0), evergreen

needleleaf forest (1), evergreen broadleaf forest (2), deciduous needleleaf forest (3), deciduous broadleaf forest (4),

mixed forest (5), closed shrubland (6), open shrubland (7), woody savannas (8), savannas (9), grassland (10),

permanent wetlands (11), cropland (12), urban and built (13), cropland/natural vegetation mosaic (14), snow and

ice (15), and barren or sparsely vegetated (16).
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Saunders 1999) are reasonably good and consistent.

Differences of the O2B standard deviations between

the two radiative transfer models are small over ocean.

c. AHI data biases and standard deviations over land

Over land, surface emissivity lookup tables (LUTs)

are used in both CRTM and RTTOV. In CRTM, the

LUT generates the emissivity as a function of wave-

number and surface type, whereas in RTTOV it is a

function of wavenumber, latitude, longitude, and month

(Vogel et al. 2011). The surface emissivity atlas in

RTTOV is extracted from the University of Wisconsin

Global Infrared Land Surface Emissivity (UWIREMIS)

database (Seemann et al. 2008). Figure 9 shows the

surface emissivity used in CRTM at all times (Fig. 9a)

and RTTOV in September (Fig. 9b), and the differences

of surface emissivity between CRTM and RTTOV

(Fig. 9c) for AHI channel 11 over Australia, as well as a

spatial distribution of surface types around Australia. It

is seen that differences of surface emissivity between

CRTMandRTTOVnear coastal areas are less than 0.03

except for the northwest coasts. However, large differ-

ences of more than 0.03–0.06 in surface emissivity be-

tween CRTM and RTTOV are found in mainland

Australia, where the surface type is mostly open

shrubland surface type. Such large differences in surface

emissivity would make the CRTM-simulated brightness

temperatures larger than those by RTTOV, resulting

in the O2BCRTM biases being much smaller than

O2BRTTOV over Australia. This is confirmed in Fig. 10,

in which a spatial distribution of O2B biases of AHI

channel 11 within 28 3 28 grid boxes over Australia

FIG. 10. Spatial distribution ofO2Bbiases ofAHI channel 11 within 28 3 28 grid boxes overAustralia calculated

using (a) CRTM and (b) RTTOV. (c) As in (a), but for replacing the surface emissivity model in CRTM with that

in RTTOV.
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FIG. 11. Spatial distributions of O2BCRTM biases of AHI channels 7–13, 15, and 16 over land within 28 3 28 grid boxes estimated by

using CRTM with the RTTOV surface emissivity model. The bias distributions and magnitudes of channel 14 are similar to those of

channel 13.
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calculated using CRTM and RTTOV is provided in

Figs. 10a and 10b, respectively. If the surface emissivity

model in CRTM is replaced with that of RTTOV, the

bias distribution (Fig. 10c) resembles that of RTTOV

(Fig. 10b).

Spatial distributions of O2B biases over land for AHI

channels 7–13, 15, and 16 using CRTMwith the RTTOV

surface emissivity model are provided in Fig. 11. The bias

distributions and magnitudes of channel 14 are similar to

those of channel 13 (figure is omitted). The O2B biases

for three water vapor channels are between 61K. In

contrast, the O2B biases for the AHI surface-sensitive

channels over land can be as large as several degrees. The

largest biases are found over the Tibet Plateau, which

resulted from a significant cold bias of the land skin

temperature in the ECMWF analyses that are inputted

into CRTM and RTTOV (Zhuo et al. 2016). The

ECMWF land skin temperatures are slightly over-

estimated during nighttime and seriously underestimated

during daytime (Trigo et al. 2015). The biased skin tem-

peratures could bring a diurnal variation of the biases for

AHI surface-sensitive channels over land, which will be

investigated in a future study.

The spatially averaged biases and standard deviations

calculated by CRTM and RTTOV for all data over land

are provided in Table 3 and Fig. 12. Except for three

water vapor channels and channel 16, which are affected

by the tropospheric water vapor and temperature profiles,

the differences in model simulations between CRTM and

RTTOV mainly come from the surface emissivity model

used in each model. The large differences of biases be-

tween CRTM and RTTOV for three tropospheric

water vapor channels 8–10 and carbon dioxide chan-

nel 16 are not as much affected by the surface emis-

sivity as those AHI surface-sensitive channels.

5. Summary and conclusions

AHI is the first imager on a geostationary orbit that

has more than 16 channels of measurements in the vis-

ible, near-infrared, and infrared parts of the electro-

magnetic spectrum. The AHI provides researchers and

weather forecasters with better data sources and re-

trieval products for observing the Eastern Hemisphere

in near–real time.

In this study, bias characteristics of AHI brightness

temperatures between observations and model simula-

tions for the 10 AHI infrared channels 7–16 used in

NWP are estimated and compared between two of the

most commonly used radiative transfer models: CRTM

and RTTOV. The AHI biases of the 10 infrared chan-

nels over ocean and land are less than 0.6 and 1.2K,

respectively. Differences between the two radiative

transfer models are mostly caused by the surface emis-

sivity model except for the biases of the upper-

tropospheric water vapor channels 8 and 9 and the

FIG. 12. (top) Biases and (bottom) standard deviations calculated byO2BCRTM (blue), O2BCRTMwith

surface emissivity model used in RTTOV v11.2 (cyan), and O2BRTTOV (red) over land.
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low-tropospheric carbon dioxide channel 16. It is shown

that AHI biases are independent of satellite zenith angle

except for channel 7 over ocean. A scene dependence of

the AHI data biases is found for three water vapor

channels. For the other seven infrared channels, the

AHI data biases remain constant until reaching high

brightness temperatures. Given the fact that the same

input variables are used for the two radiative transfer

models, the results in this study suggest that radiative

transfer models themselvesmay have biases andmust be

taken care of in satellite data assimilation for NWP.

The ABI that will be on board the next generation of

U.S. geostationary satellites (GOES-R, -S, -T, and -U)

has designs in optics and calibration similar to the AHI.

GOES-R is scheduled to be launched in November

2016. The AHI data bias estimation conducted in this

study is helpful for future applications of ABI data.
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